3.2619 \(\int \frac{5-x}{(3+2 x)^{5/2} (2+5 x+3 x^2)^{3/2}} \, dx\)

Optimal. Leaf size=197 \[ -\frac{1258 \sqrt{-3 x^2-5 x-2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right ),-\frac{2}{3}\right )}{25 \sqrt{3} \sqrt{3 x^2+5 x+2}}-\frac{6 (47 x+37)}{5 (2 x+3)^{3/2} \sqrt{3 x^2+5 x+2}}-\frac{14876 \sqrt{3 x^2+5 x+2}}{375 \sqrt{2 x+3}}-\frac{2516 \sqrt{3 x^2+5 x+2}}{75 (2 x+3)^{3/2}}+\frac{7438 \sqrt{-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{125 \sqrt{3} \sqrt{3 x^2+5 x+2}} \]

[Out]

(-6*(37 + 47*x))/(5*(3 + 2*x)^(3/2)*Sqrt[2 + 5*x + 3*x^2]) - (2516*Sqrt[2 + 5*x + 3*x^2])/(75*(3 + 2*x)^(3/2))
 - (14876*Sqrt[2 + 5*x + 3*x^2])/(375*Sqrt[3 + 2*x]) + (7438*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*S
qrt[1 + x]], -2/3])/(125*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2]) - (1258*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3
]*Sqrt[1 + x]], -2/3])/(25*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.130063, antiderivative size = 197, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {822, 834, 843, 718, 424, 419} \[ -\frac{6 (47 x+37)}{5 (2 x+3)^{3/2} \sqrt{3 x^2+5 x+2}}-\frac{14876 \sqrt{3 x^2+5 x+2}}{375 \sqrt{2 x+3}}-\frac{2516 \sqrt{3 x^2+5 x+2}}{75 (2 x+3)^{3/2}}-\frac{1258 \sqrt{-3 x^2-5 x-2} F\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{25 \sqrt{3} \sqrt{3 x^2+5 x+2}}+\frac{7438 \sqrt{-3 x^2-5 x-2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{x+1}\right )|-\frac{2}{3}\right )}{125 \sqrt{3} \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Int[(5 - x)/((3 + 2*x)^(5/2)*(2 + 5*x + 3*x^2)^(3/2)),x]

[Out]

(-6*(37 + 47*x))/(5*(3 + 2*x)^(3/2)*Sqrt[2 + 5*x + 3*x^2]) - (2516*Sqrt[2 + 5*x + 3*x^2])/(75*(3 + 2*x)^(3/2))
 - (14876*Sqrt[2 + 5*x + 3*x^2])/(375*Sqrt[3 + 2*x]) + (7438*Sqrt[-2 - 5*x - 3*x^2]*EllipticE[ArcSin[Sqrt[3]*S
qrt[1 + x]], -2/3])/(125*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2]) - (1258*Sqrt[-2 - 5*x - 3*x^2]*EllipticF[ArcSin[Sqrt[3
]*Sqrt[1 + x]], -2/3])/(25*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{5-x}{(3+2 x)^{5/2} \left (2+5 x+3 x^2\right )^{3/2}} \, dx &=-\frac{6 (37+47 x)}{5 (3+2 x)^{3/2} \sqrt{2+5 x+3 x^2}}-\frac{2}{5} \int \frac{320+423 x}{(3+2 x)^{5/2} \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{6 (37+47 x)}{5 (3+2 x)^{3/2} \sqrt{2+5 x+3 x^2}}-\frac{2516 \sqrt{2+5 x+3 x^2}}{75 (3+2 x)^{3/2}}+\frac{4}{75} \int \frac{-\frac{971}{2}-\frac{1887 x}{2}}{(3+2 x)^{3/2} \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{6 (37+47 x)}{5 (3+2 x)^{3/2} \sqrt{2+5 x+3 x^2}}-\frac{2516 \sqrt{2+5 x+3 x^2}}{75 (3+2 x)^{3/2}}-\frac{14876 \sqrt{2+5 x+3 x^2}}{375 \sqrt{3+2 x}}-\frac{8}{375} \int \frac{-\frac{6009}{2}-\frac{11157 x}{4}}{\sqrt{3+2 x} \sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{6 (37+47 x)}{5 (3+2 x)^{3/2} \sqrt{2+5 x+3 x^2}}-\frac{2516 \sqrt{2+5 x+3 x^2}}{75 (3+2 x)^{3/2}}-\frac{14876 \sqrt{2+5 x+3 x^2}}{375 \sqrt{3+2 x}}-\frac{629}{25} \int \frac{1}{\sqrt{3+2 x} \sqrt{2+5 x+3 x^2}} \, dx+\frac{3719}{125} \int \frac{\sqrt{3+2 x}}{\sqrt{2+5 x+3 x^2}} \, dx\\ &=-\frac{6 (37+47 x)}{5 (3+2 x)^{3/2} \sqrt{2+5 x+3 x^2}}-\frac{2516 \sqrt{2+5 x+3 x^2}}{75 (3+2 x)^{3/2}}-\frac{14876 \sqrt{2+5 x+3 x^2}}{375 \sqrt{3+2 x}}-\frac{\left (1258 \sqrt{-2-5 x-3 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 x^2}{3}}} \, dx,x,\frac{\sqrt{6+6 x}}{\sqrt{2}}\right )}{25 \sqrt{3} \sqrt{2+5 x+3 x^2}}+\frac{\left (7438 \sqrt{-2-5 x-3 x^2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 x^2}{3}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{6+6 x}}{\sqrt{2}}\right )}{125 \sqrt{3} \sqrt{2+5 x+3 x^2}}\\ &=-\frac{6 (37+47 x)}{5 (3+2 x)^{3/2} \sqrt{2+5 x+3 x^2}}-\frac{2516 \sqrt{2+5 x+3 x^2}}{75 (3+2 x)^{3/2}}-\frac{14876 \sqrt{2+5 x+3 x^2}}{375 \sqrt{3+2 x}}+\frac{7438 \sqrt{-2-5 x-3 x^2} E\left (\sin ^{-1}\left (\sqrt{3} \sqrt{1+x}\right )|-\frac{2}{3}\right )}{125 \sqrt{3} \sqrt{2+5 x+3 x^2}}-\frac{1258 \sqrt{-2-5 x-3 x^2} F\left (\sin ^{-1}\left (\sqrt{3} \sqrt{1+x}\right )|-\frac{2}{3}\right )}{25 \sqrt{3} \sqrt{2+5 x+3 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.393109, size = 177, normalized size = 0.9 \[ \frac{2 \left (-1832 \sqrt{5} \sqrt{\frac{x+1}{2 x+3}} \sqrt{\frac{3 x+2}{2 x+3}} (2 x+3)^{5/2} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{5}{3}}}{\sqrt{2 x+3}}\right ),\frac{3}{5}\right )-18870 x^2-42025 x+3719 \sqrt{5} \sqrt{\frac{x+1}{2 x+3}} \sqrt{\frac{3 x+2}{2 x+3}} (2 x+3)^{5/2} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{5}{3}}}{\sqrt{2 x+3}}\right )|\frac{3}{5}\right )-20905\right )}{375 (2 x+3)^{3/2} \sqrt{3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(5 - x)/((3 + 2*x)^(5/2)*(2 + 5*x + 3*x^2)^(3/2)),x]

[Out]

(2*(-20905 - 42025*x - 18870*x^2 + 3719*Sqrt[5]*Sqrt[(1 + x)/(3 + 2*x)]*(3 + 2*x)^(5/2)*Sqrt[(2 + 3*x)/(3 + 2*
x)]*EllipticE[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5] - 1832*Sqrt[5]*Sqrt[(1 + x)/(3 + 2*x)]*(3 + 2*x)^(5/2)*Sqr
t[(2 + 3*x)/(3 + 2*x)]*EllipticF[ArcSin[Sqrt[5/3]/Sqrt[3 + 2*x]], 3/5]))/(375*(3 + 2*x)^(3/2)*Sqrt[2 + 5*x + 3
*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.024, size = 203, normalized size = 1. \begin{align*}{\frac{1}{1875} \left ( 1148\,\sqrt{15}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) x\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}-7438\,\sqrt{15}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) x\sqrt{3+2\,x}\sqrt{-2-2\,x}\sqrt{-20-30\,x}+1722\,\sqrt{3+2\,x}\sqrt{15}\sqrt{-2-2\,x}\sqrt{-20-30\,x}{\it EllipticF} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) -11157\,\sqrt{3+2\,x}\sqrt{15}\sqrt{-2-2\,x}\sqrt{-20-30\,x}{\it EllipticE} \left ( 1/5\,\sqrt{30\,x+45},1/3\,\sqrt{15} \right ) -446280\,{x}^{3}-1601920\,{x}^{2}-1833470\,x-655330 \right ) \left ( 3+2\,x \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{3\,{x}^{2}+5\,x+2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)/(3+2*x)^(5/2)/(3*x^2+5*x+2)^(3/2),x)

[Out]

1/1875*(1148*15^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1
/2)-7438*15^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))*x*(3+2*x)^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)+
1722*(3+2*x)^(1/2)*15^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticF(1/5*(30*x+45)^(1/2),1/3*15^(1/2))-11157*
(3+2*x)^(1/2)*15^(1/2)*(-2-2*x)^(1/2)*(-20-30*x)^(1/2)*EllipticE(1/5*(30*x+45)^(1/2),1/3*15^(1/2))-446280*x^3-
1601920*x^2-1833470*x-655330)/(3+2*x)^(3/2)/(3*x^2+5*x+2)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x - 5}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{3}{2}}{\left (2 \, x + 3\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^(5/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="maxima")

[Out]

-integrate((x - 5)/((3*x^2 + 5*x + 2)^(3/2)*(2*x + 3)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{3 \, x^{2} + 5 \, x + 2} \sqrt{2 \, x + 3}{\left (x - 5\right )}}{72 \, x^{7} + 564 \, x^{6} + 1862 \, x^{5} + 3355 \, x^{4} + 3560 \, x^{3} + 2223 \, x^{2} + 756 \, x + 108}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^(5/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(3*x^2 + 5*x + 2)*sqrt(2*x + 3)*(x - 5)/(72*x^7 + 564*x^6 + 1862*x^5 + 3355*x^4 + 3560*x^3 + 222
3*x^2 + 756*x + 108), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x}{12 x^{4} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 56 x^{3} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 95 x^{2} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 69 x \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 18 \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2}}\, dx - \int - \frac{5}{12 x^{4} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 56 x^{3} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 95 x^{2} \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 69 x \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2} + 18 \sqrt{2 x + 3} \sqrt{3 x^{2} + 5 x + 2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)**(5/2)/(3*x**2+5*x+2)**(3/2),x)

[Out]

-Integral(x/(12*x**4*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 56*x**3*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 95*
x**2*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 69*x*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 18*sqrt(2*x + 3)*sqrt(
3*x**2 + 5*x + 2)), x) - Integral(-5/(12*x**4*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 56*x**3*sqrt(2*x + 3)*sqr
t(3*x**2 + 5*x + 2) + 95*x**2*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2) + 69*x*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2)
 + 18*sqrt(2*x + 3)*sqrt(3*x**2 + 5*x + 2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x - 5}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac{3}{2}}{\left (2 \, x + 3\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^(5/2)/(3*x^2+5*x+2)^(3/2),x, algorithm="giac")

[Out]

integrate(-(x - 5)/((3*x^2 + 5*x + 2)^(3/2)*(2*x + 3)^(5/2)), x)